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LEITER TO THE EDITOR 

A Monte Carlo renormalisation group calculation of the 
dynamical exponent z for the Baxter-Wu model 

Sheldon L Katzf 
Department of Physics, Lafayette College, Easton, Pa 18042, USA 

Received 1 September 1983 

Abstract. A Monte Carlo renormalisation group technique is used to calculate time 
correlation functions for the Baxter-Wu model. Initial lattices of size 24 x 24 and 48 x 48 
are used. The value obtained for the dynamical exponent z is in good agreement with 
that obtained by means of standard Monte Carlo methods. 

Recently, several attempts have been made to calculate the dynamical exponent z for 
various model systems. Although some calculations have utilised standard Monte 
Carlo (Stoll et a1 1973) or renormalisation group (Achiam 1980, Mazenko and Valls 
1981) techniques, the most promising results have been obtained using a dynamic 
Monte Carlo renormalisation group method ( DMCRG) developed by Tobochnik et a1 
(1981). However, attempts to test the DMCRG method have been hampered somewhat 
by the lack of model systems for which dynamical exponents have already been 
obtained. Therefore, with the exception of the three-state Potts model (Tobochnik 
and Jayaprakash 1982), the DMCRG has so far been applied only to the kinetic Ising 
model with near neighbour interactions in two and three dimensions (Tobochnik et a1 
1981, Yalabik and Gunton 1982, Katz et a1 1982). In this note, the DMCRG is applied 
to obtain the exponent z for the kinetic Ising model with spin-flip (Glauber 1963) 
dynamics on a triangular lattice with triplet interactions. The results are in good 
agreement with those obtained for this model by means of standard Monte Carlo 
techniques (Katz et a1 1979, Katz and Gunton 1981). 

The zero field equilibrium properties of the Ising model on a triangular lattice with 
triplet interactions have been solved exactly by Baxter and Wu (1973,1974). The 
model is described by the reduced Hamiltonian 

f f = K  sis,sk 
( I l k )  

where the sum is over all elementgy triangles of the lattice. The critical temperature 
is known exactly to be K,=ln(J2+1)/2.  The ground state of this Hamiltonian is 
fourfold degenerate and the system is believed to belong to the same static universality 
class as the four-state Potts model. The ground state magnetisation can be either 
M = 1 (a single ferromagnetic state) or M = -4 (for which there are three possible 
states). The M = -4 states have spins up on one triangular sublattice and down on 
the other two sublattices. A renormalisation group transformation applied to such a 
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system must keep the ground states of the system invariant. One such transformation 
has been used by den Nijs et al (1976) in a renormalisation group treatment of the 
equilibrium statics of this model and yields critical exponents consistent with the exact 
results. Figure 1 shows the cell division for this transformation. The new cell spin is 
defined as the sign of the sum of the three spins which compose the cell. Note that 
some spins are not included in any cell and are simply dropped in the next renormalisa- 
tion. Because of the three equivalent sublattices and the use of periodic boundary 
conditions, the linear dimension of any lattice chosen for a Monte Carlo study must 
be a multiple of 3. Since application of the blocking rule reduces the linear dimension 
by a factor of b = 2 at each iteration, the choice of the initial size of our lattices was 
severely restricted, We chose lattices of size 24 X 24 and 48 X 48 with periodic boundary 
conditions. Both lattices were renormalised down to a 6 X 6 lattice, as an examination 
of figure 1 will reveal that renormalising to a 3 X 3 lattice would require overlapping 
cells. 

Figure 1. The three sublattices, with the cells indicated by the full lines. 

The DMCRG method has been discussed in detail by Tobochnik et al (1981), so we 
will only summarise that method here. We determine z by matching the time correla- 
tion functions 

C ( N ,  m, T2; t )  = C(Nbd ,  m +  1, TI; b't) (1) 
where 

The number of spins in the original lattice is N, and N ( m )  is the number of block spins 
S ( m )  after m applications of the blocking rule. Using standard Monte Carlo techniques, 
we generated a sequence of spin configurations on lattices of size 24 X 24 and 48 X 48. 
Then, using the blocking rule described above, each configuration was blocked down 
to a 6 x 6  lattice. The time correlation functions defined in (2) were computed after 
each blocking. Since we were interested in the fixed point solution we set TI = T2 = T,, 
where T, is the critical temperature of the infinite system. We averaged over 301 
independent runs of 20 000 Monte Carlo steps per spin (MCS) for each lattice. Also, 
in each run, 15 000 MCS were eliminated before any averages were taken. Using many 
different statistically independent runs facilitates the calculation of errors. 

Our results for the static energy 
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are shown in table 1 .  We note that matching occurs in the last iteration to within one 
standard deviation. We note also that in spite of the large number of Monte Carlo 
runs used (a total of 6X lo6 MCS for each lattice), the standard deviations for the static 
averages are quite large. 

Table 1. Results for the energy as defined in (3). N is the number of spins in the original 
lattice and m is the number of renormalisation transformations performed. 

2" N = 24X 24 2"' N = 48 X 48 

E(O) 1 1.5502* 0.0026 E(O) 1 1.5129 * 0.0039 
2 1.4865 * 0.0045 2 1.4217 i 0.0067 
4 1.5574 *0.0060 4 1.4663 i0.0094 

8 1.5508 * 0.0128 

The results of our calculation of the time correlation functions C ( N ,  m, T ;  t )  are 
given in table 2. For large times the data for C ( f )  can be represented by exponential 
decay, 

C ( N ,  m, T ;  t )  =A',"exp(-t/.r,). (4) 
Figure 2 is a plot of C ( t )  against f after renormalisation down to a 6 X 6 lattice. Since 
we are at the fixed point, we would expect to find A r ) = A ( N b d )  m + l  . However, an 

Table 2. Results for the correlation function c(r) as defined in (2). The time unit is 
Monte Carlo steps per spin. 

2" ~ = 2 4 ~ 2 4  2"' N = 48 X 48 

0.7009*0.0019 
0.7852k0.0020 
0.8606 * 0.0019 

0.6643 * G.0023 

0.8356*0.0023 
0.7499*0.0024 

0.6463 * 0.0025 
0.7314i0.0026 
0.8204* 0.0026 

0.6346*0.0026 
0.7191 k0.0028 
0.8094 i 0.0028 

0.6260 * 0.0027 
0.7100* 0.0029 
0.801 1 * 0.0029 

0.6194 * 0.0028 
0.7029*0.0030 
0.7943*0.0031 

C(80) 1 
2 
4 
8 

C(120) 1 
2 
4 
8 

C(160) 1 
2 
4 
8 

C(200) 1 
2 
4 
8 

C(240) 1 
2 
4 
8 

C(280) 1 
2 
4 
8 

0.5694 * 0.0043 
0.6502 * 0.0047 
0.7435i0.0050 
0.8336i0.0051 
0.5543 * 0.0046 
0.6335 i0.0051 
0.7264 k0.0055 
0.8195 i0.0056 
0.5445 * 0.0048 
0.6226 k0.0053 
0.7149*0.0058 
0.8094 * 0.0059 
0.5371 i0.0049 
0.6144 k0.0055 
0.7062 * 0.0060 
0.8014i0.0063 
0.531 5 i 0.005 1 
0.6081 k0.0057 
0.6993 k 0.0062 
0.7950 k 0.0065 
0.5268 * 0.0052 
0.6028 i0.0058 
0.6936i0.0064 
0.7895 i 0.0067 
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Figure 2. A plot of In C ( t )  against time for 24X 24 (crosses) and 4 8 x 4 8  (open circles) 
lattices after blocking down to a 6 x 6  lattice. 

examination of figure 2 indicates this is not the case. A least squares fit to our data, 
assuming In C( t )  - A + Bt, yields A24 = -0.1793, &4 = 0.000850 and A48 = -0.1843 
and = -0.000186. Since A24 # A48, the value of z obtained would be dependent 
on the points chosen for matching. The values of z range from z = 2.01 ( t  = 50 and 
b't = 201.6) to z = 2.19 at t = CO. If, on the other hand, we require that the amplitudes 
A24 and A48 be equal at the fixed point, the values of z range from z = 2.03 to z = 2.05. 
These values are in good agreement with values obtained by means of a Monte Carlo 
study of the relaxation of the energy-energy and magnetisation-magnetisation time 
correlation functions. This study yielded a value of z = 1.95 with an estimated error 
of 10%. It should be noted that the standard Monte Carlo method yields an effective 
exponent, because one cannot be certain of the size of the asymptotic dynamical critical 
region. However, the calculation by means of DMCRG is performed at the critical point 
and such considerations are therefore unimportant. It should also be noted that the 
accuracy of the DMCRG method depends upon the assumption that the number of 
renormalisations performed is sufficient to eliminate the effect of irrelevant operators. 
Since matching is achieved for the static correlation function it is likely, but not a 
certainty, that this is the case. Finally, we point out that it is possible that a different 
choice of blocking rule would lead to a faster convergence. 

This work was supported by a Lafayette College Junior Faculty Leave grant. 
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